Enhancement of the Upconversion Emission by Visible-to-Near-Infrared Fluorescent Graphene Quantum Dots for miRNA Detection

نویسندگان

  • Marco Laurenti
  • Miguel Paez-Perez
  • Manuel Algarra
  • Paulino Alonso-Cristobal
  • Enrique Lopez-Cabarcos
  • Diego Mendez-Gonzalez
  • Jorge Rubio-Retama
چکیده

We developed a sensor for the detection of specific microRNA (miRNA) sequences that was based on graphene quantum dots (GQDs) and ssDNA-UCNP@SiO2. The proposed sensor exploits the interaction between the sp(2) carbon atoms of the GQD, mainly π-π stacking, and the DNA nucleobases anchored on the upconversion nanoparticles (UCNPs). This interaction brings the GQD to the surface of the ssDNA-UCNP@SiO2 system, enhancing the upconversion emission. On the other hand, hybridization of the single-stranded DNA (ssDNA) chains anchored on the nanoparticles with their complementary miRNA sequences blocks the capacity of the UCNPs to interact with the GQD through π-π stacking. That gives as result a reduction of the fluorescent enhancement, which is dependent on the concentration of miRNA sequences. This effect was used to create a sensor for miRNA sequences with a detection limit of 10 fM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on "Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis".

A facile ultrasonic route for the fabrication of graphene quantum dots (GQDs) with upconverted emission is presented. The as-prepared GQDs exhibit an excitation-independent downconversion and upconversion photoluminescent (PL) behavior, and the complex photocatalysts (rutile TiO(2)/GQD and anatase TiO(2)/GQD systems) were designed to harness the visible spectrum of sunlight. It is interesting t...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...

متن کامل

Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles

Near-infrared (NIR)-to-Visible upconversion fluorescent nanoparticles emit visible light upon NIR-light excitation, and are well suited for bioimaging, compared to the commonly used downconversionfluorescentmaterials.Thesenanoparticleshave advantages such as minimum photodamage to living organisms, weak background fluorescence, high detection sensitivity, and high light-penetration depth in tis...

متن کامل

Second harmonic generation and two-photon luminescence upconversion in glasses doped with ZnSe nanocrystalline quantum dots

We report two-photon excited emission in borosilicate glasses doped with ZnSe nanocrystalline quantum dots. The emission, predominantly near the two-photon energy and detected in the direction of the excitation beam, is in the visible, and the fundamental excitation is the near-infrared output of a tunable femtosecond laser. Depending on the two-photon energy, timeand frequency-resolved measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016